Example shows Python Column Chart with Category Axis. Category x-axis shows the category name / text-label instead of numbers / date-time. Demo also includes Django view & template code that you can run locally.
<!-- index.html --> {% load static %} <html> <head> <script> window.onload = function () { var chart = new CanvasJS.Chart("chartContainer", { animationEnabled: true, exportEnabled: true, title:{ text: "Gold Reserves", fontFamily: "Tahoma" }, axisY: { title: "Gold Reserves (in tonnes)" }, data: [{ type: "column", yValueFormatString: "#,##0.## tonnes", dataPoints: {{ datapoints|safe }} }] }); chart.render(); } </script> </head> <body> <div id="chartContainer" style="width: 100%; height: 360px;"></div> <script src="{% static 'canvasjs.min.js' %}"></script> </body> </html>
from django.shortcuts import render def index(request): datapoints = [ { "y": 3373.64, "label": "Germany" }, { "y": 2435.94, "label": "France" }, { "y": 1842.55, "label": "China" }, { "y": 1828.55, "label": "Russia" }, { "y": 1039.99, "label": "Switzerland" }, { "y": 765.215, "label": "Japan" }, { "y": 612.453, "label": "Netherlands" } ] return render(request, 'index.html', { "datapoints" : datapoints })
The width of datapoint can be customized using dataPointWidth property. Similarly, the minimum & maximum width of the datapoint can be customized by setting dataPointMinWidth & dataPointMaxWidth properties. You can also change the color and fillOpacity of the columns using color and opacity properties respectively.